Friday, November 23, 2007

the Light Dependent Processes (Light Reactions) light strikes chlorophyll a in such a way as to excite electrons to a higher energy state. In a series of reactions the energy is converted (along an electron transport process) into ATP and NADPH. Water is split in the process, releasing oxygen as a by-product of the reaction. The ATP and NADPH are used to make C-C bonds in the Light Independent Process (Dark Reactions).
In the Light Independent Process, carbon dioxide from the atmosphere (or water for aquatic/marine organisms) is captured and modified by the addition of Hydrogen to form carbohydrates (general formula of carbohydrates is [CH2O]n). The incorporation of carbon dioxide into organic compounds is known as carbon fixation. The energy for this comes from the first phase of the photosynthetic process. Living systems cannot directly utilize light energy, but can, through a complicated series of reactions, convert it into C-C bond energy that can be released by glycolysis and other metabolic processes.
Photosystems are arrangements of chlorophyll and other pigments packed into thylakoids. Many Prokaryotes have only one photosystem, Photosystem II (so numbered because, while it was most likely the first to evolve, it was the second one discovered). Eukaryotes have Photosystem II plus Photosystem I. Photosystem I uses chlorophyll a, in the form referred to as P700. Photosystem II uses a form of chlorophyll a known as P680. Both "active" forms of chlorophyll a function in photosynthesis due to their association with proteins in the thylakoid membrane.
Action of a photosystem. This image is from the University of Minnesota page at http://genbiol.cbs.umn.edu/Multimedia/examples.html.
Photophosphorylation is the process of converting energy from a light-excited electron into the pyrophosphate bond of an ADP molecule. This occurs when the electrons from water are excited by the light in the presence of P680. The energy transfer is similar to the chemiosmotic electron transport occurring in the mitochondria. Light energy causes the removal of an electron from a molecule of P680 that is part of Photosystem II. The P680 requires an electron, which is taken from a water molecule, breaking the water into H+ ions and O-2 ions. These O-2 ions combine to form the diatomic O2 that is released. The electron is "boosted" to a higher energy state and attached to a primary electron acceptor, which begins a series of redox reactions, passing the electron through a series of electron carriers, eventually attaching it to a molecule in Photosystem I. Light acts on a molecule of P700 in Photosystem I, causing an electron to be "boosted" to a still higher potential. The electron is attached to a different primary electron acceptor (that is a different molecule from the one associated with Photosystem II). The electron is passed again through a series of redox reactions, eventually being attached to NADP+ and H+ to form NADPH, an energy carrier needed in the Light Independent Reaction. The electron from Photosystem II replaces the excited electron in the P700 molecule. There is thus a continuous flow of electrons from water to NADPH. This energy is used in Carbon Fixation. Cyclic Electron Flow occurs in some eukaryotes and primitive photosynthetic bacteria. No NADPH is produced, only ATP. This occurs when cells may require additional ATP, or when there is no NADP+ to reduce to NADPH. In Photosystem II, the pumping to H ions into the thylakoid and the conversion of ADP + P into ATP is driven by electron gradients established in the thylakoid membrane.

Noncyclic photophosphorylation (top) and cyclic photophosphorylation (bottom). These processes are better known as the light reactions. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.
The above diagrams present the "old" view of photophosphorylation. We now know where the process occurs in the chloroplast, and can link that to chemiosmotic synthesis of ATP.
Chemiosmosis as it operates in photophosphorylation within a chloroplast. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.
Halobacteria, which grow in extremely salty water, are facultative aerobes, they can grow when oxygen is absent. Purple pigments, known as retinal (a pigment also found in the human eye) act similar to chlorophyll. The complex of retinal and membrane proteins is known as bacteriorhodopsin, which generates electrons which establish a proton gradient that powers an ADP-ATP pump, generating ATP from sunlight without chlorophyll. This supports the theory that chemiosmotic processes are universal in their ability to generate ATP.
Dark Reaction Back to Top
Carbon-Fixing Reactions are also known as the Dark Reactions (or Light Independent Reactions). Carbon dioxide enters single-celled and aquatic autotrophs through no specialized structures, diffusing into the cells. Land plants must guard against drying out (desiccation) and so have evolved specialized structures known as stomata to allow gas to enter and leave the leaf. The Calvin Cycle occurs in the stroma of chloroplasts (where would it occur in a prokaryote?). Carbon dioxide is captured by the chemical ribulose biphosphate (RuBP). RuBP is a 5-C chemical. Six molecules of carbon dioxide enter the Calvin Cycle, eventually producing one molecule of glucose. The reactions in this process were worked out by Melvin Calvin (shown below).
The above image is from http://www-itg.lbl.gov/ImgLib/COLLECTIONS/BERKELEY-LAB/PEOPLE/INDIVIDUALS/index/BIOCHEM_523.html, Ernest OrlandoLawrence Berkeley National Laboratory. " One of the new areas, cultivated both in Donner and the Old Radiation Laboratory, was the study of organic compounds labeled with carbon-14. Melvin Calvin took charge of this work at the end of the war in order to provide raw materials for John Lawrence's researches and for his own study of photosynthesis. Using carbon-14, available in plenty from Hanford reactors, and the new techniques of ion exchange, paper chromatography, and radioautography, Calvin and his many associates mapped the complete path of carbon in photosynthesis. The accomplishment brought him the Nobel prize in chemistry in 1961. (The preceding information was excerpted from the text of the Fall 1981 issue of LBL Newsmagazine.) Citation Caption: LBL News, Vol.6, No.3, Fall 1981 Melvin Calvin shown with some of the apparatus he used to study the role of carbon in photosynthesis."
The first steps in the Calvin ccycle. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.
The first stable product of the Calvin Cycle is phosphoglycerate (PGA), a 3-C chemical. The energy from ATP and NADPH energy carriers generated by the photosystems is used to attach phosphates to (phosphorylate) the PGA. Eventually there are 12 molecules of glyceraldehyde phosphate (also known as phosphoglyceraldehyde or PGAL, a 3-C), two of which are removed from the cycle to make a glucose. The remaining PGAL molecules are converted by ATP energy to reform 6 RuBP molecules, and thus start the cycle again. Remember the complexity of life, each reaction in this process, as in Kreb's Cycle, is catalyzed by a different reaction-specific enzyme.
C-4 Pathway Back to Top
Some plants have developed a preliminary step to the Calvin Cycle (which is also referred to as a C-3 pathway), this preamble step is known as C-4. While most C-fixation begins with RuBP, C-4 begins with a new molecule, phosphoenolpyruvate (PEP), a 3-C chemical that is converted into oxaloacetic acid (OAA, a 4-C chemical) when carbon dioxide is combined with PEP. The OAA is converted to Malic Acid and then transported from the mesophyll cell into the bundle-sheath cell, where OAA is broken down into PEP plus carbon dioxide. The carbon dioxide then enters the Calvin Cycle, with PEP returning to the mesophyll cell. The resulting sugars are now adjacent to the leaf veins and can readily be transported throughout the plant.
C-4 photosynthsis involves the separation of carbon fixation and carbohydrate systhesis in space and time. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.
The capture of carbon dioxide by PEP is mediated by the enzyme PEP carboxylase, which has a stronger affinity for carbon dioxide than does RuBP carboxylase When carbon dioxide levels decline below the threshold for RuBP carboxylase, RuBP is catalyzed with oxygen instead of carbon dioxide. The product of that reaction forms glycolic acid, a chemical that can be broken down by photorespiration, producing neither NADH nor ATP, in effect dismantling the Calvin Cycle. C-4 plants, which often grow close together, have had to adjust to decreased levels of carbon dioxide by artificially raising the carbon dioxide concentration in certain cells to prevent photorespiration. C-4 plants evolved in the tropics and are adapted to higher temperatures than are the C-3 plants found at higher latitudes. Common C-4 plants include crabgrass, corn, and sugar cane. Note that OAA and Malic Acid also have functions in other processes, thus the chemicals would have been present in all plants, leading scientists to hypothesize that C-4 mechanisms evolved several times independently in response to a similar environmental condition, a type of evolution known as convergent evolution.
Photorespiration. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.
We can see anatomical differences between C3 and C4 leaves.
Leaf anatomy of a C3 (top) and C4 (bottom) plant. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (www.sinauer.com) and WH Freeman (www.whfreeman.com), used with permission.
The Carbon Cycle Back to Top
Plants may be viewed as carbon sinks, removing carbon dioxide from the atmosphere and oceans by fixing it into organic chemicals. Plants also produce some carbon dioxide by their respiration, but this is quickly used by photosynthesis. Plants also convert energy from light into chemical energy of C-C covalent bonds. Animals are carbon dioxide producers that derive their energy from carbohydrates and other chemicals produced by plants by the process of photosynthesis.
The balance between the plant carbon dioxide removal and animal carbon dioxide generation is equalized also by the formation of carbonates in the oceans. This removes excess carbon dioxide from the air and water (both of which are in equilibrium with regard to carbon dioxide). Fossil fuels, such as petroleum and coal, as well as more recent fuels such as peat and wood generate carbon dioxide when burned. Fossil fuels are formed ultimately by organic processes, and represent also a tremendous carbon sink. Human activity has greatly increased the concentration of carbon dioxide in air. This increase has led to global warming, an increase in temperatures around the world, the Greenhouse Effect. The increase in carbon dioxide and other pollutants in the air has also led to acid rain, where water falls through polluted air and chemically combines with carbon dioxide, nitrous oxides, and sulfur oxides, producing rainfall with pH as low as 4. This results in fish kills and changes in soil pH which can alter the natural vegetation and uses of the land. The Global Warming problem can lead to melting of the ice caps in Greenland and Antarctica, raising sea-level as much as 120 meters. Changes in sea-level and temperature would affect climate changes, altering belts of grain production and rainfall patterns.
Learning Objectives Back to Top
After completing this chapter you should be able to:
Study the general equation for photosynthesis and be able to indicate in which process each reactant is used and each product is produced.
List the two major processes of photosynthesis and state what occurs in those sets of reactions.
Distinguish between organisms known as autotrophs and those known as heterotrophs as pertains to their modes of nutrition.
Explain the significance of the ATP/ADP cycle.
Describe the nature of light and how it is associated with the release of electrons from a photosystem.
Describe how the pigments found on thylakoid membranes are organized into photosystems and how they relate to photon light energy.
Describe the role that chlorophylls and the other pigments found in chloroplasts play to initiate the light-dependent reactions.
Describe the function of electron transport systems in the thylakoid membrane.
Explain the role of the two energy-carrying molecules produced in the light-dependent reactions (ATP and NADPH) in the light-independent reactions.
Describe the Calvin-Benson cycle in terms of its reactants and products.
Explain how C-4 photosynthesis provides an advantage for plants in certain environments.
Describe the phenomenon of acid rain, and how photosynthesis relates to acid rain and the carbon cycle..
Terms Back to Top
acid rain
autotrophs
ATP
Calvin Cycle
carotenoids
chlorophyll a
chlorophyll b
cellular respiration
Dark Reactions
electron transport
enzyme
glucose
grana
leaves
Light Reactions
mesophyll
NADPH
phosphoglyceraldehyde or PGAL
phosphoglycerate (PGA)
phosphorylate
photic) zone
Photosynthesis
Photosystems
Photophosphorylation
RuBP (Ribulose Biphosphate)
sinks
stomata
stroma
thylakoid
xylem
Review Questions Back to Top
1. The organic molecule produced directly by photosynthesis is: a) lipids; b) sugar; c) amino acids; d) DNA
2. The photosynthetic process removes ___ from the environment. a) water; b) sugar; c) oxygen; d) chlorophyll; e) carbon dioxide
3. The process of splitting water to release hydrogens and electrons occurs during the _____ process. a) light dependent; b) light independent; c) carbon fixation; d) carbon photophosphorylation; e) glycolysis
4. The process of fixing carbon dioxide into carbohydrates occurs in the ____ process. a) light dependent; b) light independent; c) ATP synthesis; d) carbon photophosphorylation; e) glycolysis
5. Carbon dioxide enters the leaf through ____. a) chloroplasts; b) stomata: c) cuticle; d) mesophyll cells; e) leaf veins
6. The cellular transport process by which carbon dioxide enters a leaf (and by which water vapor and oxygen exit) is ___. a) osmosis; b) active transport; c. co- transport; d) diffusion; e) bulk flow
7. Which of the following creatures would not be an autotroph? a) cactus; b) cyanobacteria; c) fish; d) palm tree; e) phytoplankton
8. The process by which most of the world's autotrophs make their food is known as ____. a) glycolysis; b) photosynthesis; c) chemosynthesis; d) herbivory; e) C-4 cycle
9. The process of ___ is how ADP + P are converted into ATP during the Light dependent process. a) glycolysis; b) Calvin Cycle; c) chemiosmosis; d) substrate-level phosphorylation; e) Kreb's Cycle
10. Once ATP is converted into ADP + P, it must be ____. a) disassembled into components (sugar, base, phosphates) and then ressembled; b) recharged by chemiosmosis; c) converted into NADPH; d) processed by the glycolysis process; e) converted from matter into energy.
11. Generally speaking, the longer the wavelenght of light, the ___ the available energy of that light. a) smaller; b) greater; c) same
12. The section of the electromagnetic spectrum used for photosynthesis is ___. a) infrared; b) ultraviolet; c) x-ray; d) visible light; e) none of the above
13. The colors of light in the visible range (from longest wavelength to shortest) is ___. a) ROYGBIV; b) VIBGYOR; c) GRBIYV; d) ROYROGERS; e) EBGDF
14. The photosynthetic pigment that is essential for the process to occur is ___. a) chlorophyll a; b) chlorophyll b; c) beta carotene; d) xanthocyanin; e) fucoxanthin
15. When a pigment reflects red light, _____. a) all colors of light are absorbed; b) all col;ors of light are reflected; c) green light is reflected, all others are absorbed; d) red light is reflected, all others are absorbed; e) red light is absorbed after it is reflected into the internal pigment molecules.
16. Chlorophyll a absorbs light energy in the ____color range. a) yellow-green; b) red-organge; c) blue violet; d) a and b; e) b and c.
17. A photosystem is ___. a) a collection of hydrogen-pumping proteins; b) a collection of photosynthetic pigments arranged in a thylakjoid membrane; c) a series of electron-accepting proteins arranged in the thylakoid membrane; d. found only in prokaryotic organisms; e) multiple copies of chlorophyll a located in the stroma of the chloroplast.
18. The individual flattened stacks of membrane material inside the chloroplast are known as ___. a) grana; b) stroma; c) thylakoids; d) cristae; e) matrix
19. The fluid-filled area of the chloroplast is the ___. a) grana; b) stroma; c) thylakoids; d) cristae; e) matrix
20. The chloroplast contains all of these except ___. a) grana; b) stroma; c) DNA; d) membranes; e) endoplasmic reticulum
21. The chloroplasts of plants are most close in size to __. a) unfertilized human eggs; b) human cheek cells; c) human nerve cells; d) bacteria in the human mouth; e) viruses
22. Which of these photosynthetic organisms does not have a chloroplast? a) plants; b) red algae; c) cyanobacteria; d) diatoms; e) dinoflagellates
23. The photoelectric effect refers to ____. a) emission of electrons from a metal when energy of a critical wavelength strikes the metal; b) absorbtion of electrons from the surrounding environment when energy of a critical wavelength is nearby; c) emission of electrons from a metal when struck by any wavelength of light; d) emission of electrons stored in the daytime when stomata are open at night; e) release of NADPH and ATP energy during the Calvin Cycvle when light iof a specific wavelength strikes the cell.
24. Light of the green wavelengths is commonly absorbed by which accessory pigment? a) chlorophyll a; b) chlorophyll b; c) phycocyanin; d) beta carotene
25. The function of the electron transport proteins in the thyakoid membranes is ___. a) production of ADP by chemiosmosis; b) production of NADPH by substrate-level phosphorylation; c) pumping of hydrogens into the thylakoid space for later generation of ATP by chemiosmosis; d) pumping of hydrogens into the inner cristae space for later generation of ATP by chemiosmosis; e) preparation of water for eventual incorporation into glucose
26. ATP is known as the energy currency of the cell because ____. a) ATP is the most readily usable form of energy for cells; b) ATP passes energy along in an electron transport chain; c) ATP energy is passed to NADPH; d) ATP traps more energy than is produced in its formation; e) only eukaryotic cells use this energy currency.
27. Both cyclic and noncyclic photophosphorylation produce ATP. We can infer that the purpose of ATP in photosynthesis is to ____. a) supply hydrogen to the carbohydrate; b) supply carbon to the carbohydrate; c) supply energy that can be used to form a carbohydrate; d) transfer oxygens from the third phosphate group to the carbohydrate molecule; e) convert RuBP into PGA
28. The role of NADPH in oxygen-producing photosynthesis is to ____. a) supply hydrogen to the carbohydrate; b) supply carbon to the carbohydrate; c) supply energy that can be used to form a carbohydrate; d) transfer oxygens from the third phosphate group to the carbohydrate molecule; e) convert RuBP into PGA.
29. The dark reactions require all of these chemicals to proceed except ___. a) ATP; b) NADPH; c) carbon dioxide; d) RUBP; e) oxygen
30. The first stable chemical formed by the Calvin Cycle is _____. a) RUBP; b) RU/18; c) PGA; d) PGAL; e) Rubisco
31. The hydrogen in the carbohydrate produced by the Calvin Cycle comes from ___ a.) ATP; b) NADPH; c) the environment if the pH is very acidic; d) a and b; e) a and c
32. The carbon incorporated into the carbohydrate comes from ___. a) ATP; b) NADPH; c) carbon dioxide; d) glucose; e) organic molecules
33. C-4 photosynthesis is so named because _____. a) it produces a three carbon compound as the first stable product of photosynthesis; b) it produces a four carbon compound as the first stable produc of photosynthesis; c) it produces four ATP and four NADPH molecules for carbon fixation.; d) there are only four steps in this form of carbon fixation into carbohydrate.
Links Back to Top
ASU Photosynthesis Center This site continues to grow in its rich presentation of information. Check out the section on early events in photosynthesis.
MIT Hyptertextbook Photosynthesis Chapter View a student created hypertextbook chapter on this topic.
Oceans and the Carbon Cycle
Index to Climate Change Fact Sheets
The Chemistry of Photosynthesis (from Internet Chemistry site)
Photosynthesis (Whitman College) An outline of the topic.
Photosynthesis Problem Set 1 and Photosynthesis Problem Set 2 The Biology Project (University of Arizona) provides an excellent resource with online question/answer and tutorial features. Problem Set 1 focuses on the light reactions while Problem Set 2 focuses on the dark reactions.
Why Leaves Change Color A very nicely done site explaining one of those questions we all bugged our parents about: why leaves change color in the fall. If you live in the desert, as I do, you must travel some distance to view this wonderful biological phenomenon.
Text ©1992, 1994, 1997, 1998, 1999, 2000, 2001, 2007 by M.J. Farabee, all rights reserved. Use for educational purposes is encouraged.
Back to Table of Contents Go to CELLULAR RESPIRATION
Email: mj.farabee@emcmail.maricopa.edu
Chosen Value of the Week 1/30/98
Last modified:
The URL of this page is:

No comments: